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Abstract. A perturbative study of the Holstein molecular crystal model which accounts for lattice
structure and dimensionality effects is presented. Anti-adiabatic conditions peculiar to narrow-
band materials and an intermediate-to-strong electron–phonon coupling are assumed. The polaron
effective mass depends crucially in all dimensions on the intermolecular coupling strengths which
also affect the size of the lattice deformation associated with the small-polaron formation.

1. Introduction

Several studies published over the last few years have addressed questions related to the
existence of small polarons with itinerant properties in real systems [1–7]. This issue is
central for a possible description of high-Tc superconductivity in terms of (bi)polaronic
models [8, 9]. In spite of being well defined quasiparticles, small polarons may lose their
mobility either because of a dynamical dephasing between the charge carriers and their
surrounding deformation field or because of the heaviness of the effective mass. These
effects could however differ significantly according to the regime (adiabatic or anti-adiabatic)
and the strength of electron–phonon coupling characterizing the system [10]. Theoretical
investigations start generally from the Holstein molecular crystal model [11], a fundamental
tool which has revealed a rich variety of behaviours in the polaron landscape through the use of
quantum Monte Carlo methods [12,13], density matrix renormalization group techniques [14],
variational methods [7,15–17], cluster solutions [18–21] and perturbative approaches [22–24].
A numerical study of the polaron bandwidth in the first order of perturbative theory has proved
that the phonon momentum dependence is a key feature of the Holstein Hamiltonian and that the
lattice dimensionality strongly influences the bandwidth values [25]. Unlike other properties
such as ground-state energy and effective mass, the bandwidth is not affected by second-order
corrections and therefore it provides a useful test bench for alternative, non-perturbative attacks
on the polaron problem [26]. Being aware of the importance that the intermolecular forces
have in the narrowing of the polaron band, we report here on a perturbative numerical study
of the mass enhancement in the strong-coupling and anti-adiabatic regime. My reasons for
choosing to start from this regime are threefold:

(i) it is the easiest in the sense that the lattice deformation follows the charge carriers
coherently and the above-mentioned dephasing features can be ruled out;

(ii) the unit comprising electron and phonon dressing is a stable small polaron—that is, the
size of the quasiparticle is not significantly broadened in some portions of our parameter
space;
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(iii) this regime is relevant to several classes of narrow-band materials whose charge-carrier
effective masses merit accurate estimates.

Although the present work assumes that the carriers are coupled to bosonic degrees of freedom
having a vibrational origin, anti-adiabatic conditions are likely to occur in excitonic systems
where the characteristic frequency ω̄ could easily be of the order of 1 eV and the boson can
therefore follow the electron essentially without retardation. In these cases the carrier effective
mass is expected to be only moderately enhanced with respect to the bare-electron mass.

In section 2, the dispersive Holstein model is briefly reviewed while the numerical results
are displayed in section 3. Some conclusions are drawn in section 4.

2. The Holstein model with dispersive phonons

My starting point is the real-space–momentum-space representation of the Holstein Hamil-
tonian which reads

H = −t
∑
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(1)

c
†
i (ci) creates (destroys) a tight-binding electron at the ith molecular site and t is the hopping

integral related to the bare-electron half-bandwidth D by D = zt , z being the coordination
number. ε is a reference electronic energy and rj is the j th-lattice-site vector. N is the
number of molecules in the lattice. It is understood that t differs from zero only between
first-neighbour sites and this poses a constraint on the i �= j sum in the first term. a

†
k (ak)

creates (destroys) a k-phonon with frequencyωk. The lattice dimensionality enters the problem
through the phonon dispersion relations which have been obtained analytically by assuming
first-neighbour pairwise intermolecular forces along the linear chain (1D), in the square lattice
(2D) and in the simple cubic lattice (3D) [27]:
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Cx,y,z = γ 2(3 + 2(cxcy + sxsy + cxcz + sxsz + cycz + sysz)) + 2βγ (cx + cy + cz)

(2)

where cx = cos kx , cy = cos ky , cz = cos kz, sx = sin kx etc. β is the intramolecular force
constant and γ is the intermolecular first-neighbour force constant. Let us define ω2

0 = 2β/M
and ω2

1 = γ /M with M being the reduced molecular mass. N is the number of diatomic
molecules in the lattice and g is the local electron–phonon coupling constant. The adiabatic
parameter is h̄ω̄/D, ω̄ being a characteristic phonon frequency which we take as the zone-centre
frequency and whose expression is: ω̄2 = ω2

0 + zω2
1.

Throughout this paper we fix h̄ω0 = 100 meV and t = 15 meV so that the anti-adiabatic
condition h̄ω̄/D > 1 is fulfilled in any dimensionality. Moreover, our perturbative approach
requires the occurrence of the condition D < g [28]. By applying the Lang–Firsov unitary
transformation [29] and a subsequent 1/λ0 expansion, with λ0 ≡ g2/(h̄ω0D) being the ratio
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between the polaron binding energy and the electron half-bandwidth [30], H of equation (1)
transforms into H̃ = H̃0 + H̃P with
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H̃0 is diagonal except for a second-order term in the electron density operator which could cause
an attractive electron–electron interaction [8]. The perturbation H̃P displays the fundamental
features of the polaronic quasiparticle such as the hopping integral narrowing (the first
factor in equation (3)) plus the peculiar mixing of fermionic and bosonic variables. At any
electron–phonon interaction vertex, m (n) phonons can be emitted from (absorbed by) the
cloud surrounding the electron provided that the total crystal momentum is conserved. By
choosing a transformed ground state with no phonons we see that the first-order dispersive
contribution E(1) to the ground-state polaron band arises only from the n = m = 0 term in
equation (3) and hence from the zero-phonon scattering process. In 3D and taking a lattice
spacing a = |ri − rj | = 1, one finds

E(1)(p) = −2t (cospx + cospy + cospz)exp
[
−2g2

N

∑
kx

sin2 kx

2

∑
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]
(4)

where the total crystal momentum p coincides with the electron momentum due to the absence
of self-energy corrections. The second-order perturbative contribution requires summation
over all intermediate states having m k-phonons more than the vacuum and one electron on
a first neighbour i of the initial site j . Moreover, the final electronic position f can either
coincide with j (this process does not introduce dispersive effects in the polaron band) or be
a first neighbour of the i-site. The latter scenario is clearly dimension dependent: in 1D the
final site is a second neighbour of j , in 2D f can be either a second or a third neighbour of j
and in 3D the fourth-neighbour site can also be reached via hopping. While the detailed study
of these dispersive effects (which can become relevant in adiabatic conditions) is postponed
to a later paper, we turn now to computing the polaron effective mass. It should be remarked
that the second-order corrections decrease the mass values calculated in first-order perturbative
theory which therefore should be taken to provide upper bounds for the polaron mass.

3. Polaron effective masses

The polaron mass m∗ can be obtained according to the definition

m∗

m0
= zt

∇2E(p)|p=0
(5)

where m0 is the bare-band mass and the dispersive polaron band is given by equation (4).
The polaron binding energy obviously has no p-dispersion. Then, m∗/m0 is at first order
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independent of t and coincident simply with the reciprocal of the band-narrowing factor. This
picture holds in the strong-coupling regime assumed here. In figure 1(a), the computed ratios
m∗/m0 for 1D, 2D and 3D are shown versus the first-neighbour intermolecular force constant
ω1. While the polaron masses strongly depend on the dimensionality d and are very large at
small ω1, the ratios become essentially d-independent in the upper portion of the parameter
range and tend to converge to 2. The value of the polaron binding energy λ0 > 1 signals that the
energy gain associated with the lattice deformation is larger than the kinetic energy due to the
tight-binding hopping in the bare band. Therefore it is energetically convenient to the electron

Figure 1. (a) One-, two- and three-dimensional polaron masses (in units of the bare-band mass)
versus the first-neighbour intermolecular energy. The dispersionless polaron binding energy is 5.3,
in units of the bare-electron kinetic energy D = zt . (b) One-, two- and three-dimensional lattice
deformations versus the first-neighbour intermolecular energy. The αd0 are the lattice deformation
values in a dispersionless model (ω1 = 0). ω̄1 = 48 meV marks the lower bound for the validity
of the model (see the text).
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to be dressed by the phonon cloud and become a quasiparticle. Actually, in anti-adiabatic
regimes, the more restrictive condition concerning the lattice deformation α0 ≡ g/(h̄ω0) > 1
needs to be fulfilled to guarantee that our quasiparticle is a small polaron. While λ0 andα0 refer
to a system with dispersionless phonons it is clear that both the polaron binding energy and the
lattice deformation parameter will change after switching on the intermolecular interactions.
The role of the intermolecular couplings is not simply that of increasing the characteristic
phonon frequency but rather that of establishing the correct Holstein model dependence on
dimensionality. Ignoring the intermolecular couplings would yield a 1D polaron band )E1D

that was larger than the 2D polaron band)E2D and)E2D > )E3D which is clearly unphysical
since the polaronic wave-function overlap is larger for higher dimensionality. This wrong trend
would hold for any value of the intramolecular frequency ω0. Thus, as observed by Holstein
himself in his original paper [11], the phonon dispersion is a vital ingredient of the theory and
this observation motivates our numerical investigation.

Because of our definitions, λ0 does not depend on d whereas α0 is ∝√
d. In figure 1(b)

we see that the lattice deformation

α = N−1g
∑

k

(h̄ωk)
−1

is in all dimensions a decreasing function of the intermolecular force constant and, in 1D,
the system does not fulfil the small-polaron condition at the largest ω1-values. This case
has been presented to point out how the starting condition α1D

0 = 1.3 sets the 1D system
rather in an intermediate-coupling regime where a broadening of the polaron size can take
place [31, 32]. Under these conditions the same perturbative method based on the Lang–
Firsov transformation becomes questionable†. Below ω̄1 = 48 meV the polaron bandwidth
inequalities )E3D > )E2D > )E1D are not satisfied [25] as expected on general grounds;
hence, the dispersionless and the weakly dispersive Holstein Hamiltonians yield erroneous
estimates of the effective masses. The straight line in figure 1(b) marks therefore the lower
bound for the intermolecular coupling which guarantees the validity of the model.

Increasing the electron–phonon coupling—see figure 2(a)—leads to a strong mass
enhancement (particularly in 3D) at small ω1 while the mass ratios converge to 5 at large
intermolecular coupling strengths. Note (figure 2(b)) that the polaron is small for all d
throughout the whole ω1-range; hence the Lang–Firsov method works well in this case.
The threshold value for the validity of the Holstein model is set here at ω̄1 = 59 meV. The
inequalities m∗

3D > m∗
2D > m∗

1D keep on being satisfied for a range of ω1-values above the
threshold before convergence is achieved, but second-order perturbative terms (being larger
for higher dimensionality) are expected to partly correct this trend. Figures 3 show that a
stronger e–ph coupling, with λ0 = 21.3, yields a mass ratio of �25 and shifts the threshold
ω̄1 to 65 meV, indicating the relationship between the features of the phonon spectrum and the
strength of the g-coupling. Also in this case the polaron size remains small throughout the
whole ω1-range (see figure 3(b)), thus confirming the reliability of the Lang–Firsov method in
a regime of strong e–ph coupling with anti-adiabatic conditions.

Next, I have varied g in the range 1–4 (in units of h̄ω0) and found, at any g, the minimum
intermolecular coupling ω̄1(g) at which the bandwidth inequalities )E3D > )E2D > )E1D

are satisfied. This criterion yields an empirical relation, ω̄1(g) � ω̄1(1)(1 + ln(g)), which
allows one to obtain a reliable estimate of the polaron effective mass. In figure 4 the 1D mass
ratio is plotted versus the dimensionless g/(h̄ω0) both in the first and the second order of
perturbative theory: it turns out that second-order corrections are negligible in 1D systems

† The questions related to the validity of the perturbative approach both in the adiabatic and the anti-adiabatic regime
will be discussed in detail in a forthcoming paper.
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Figure 2. (a) As figure 1(a), but with a dispersionless polaron binding energy λ0 = 10.9. (b) As
figure 1(b), but with larger lattice deformation values. The lower bound for the validity of the
model is set at ω̄1 = 59 meV.

with anti-adiabatic conditions such as those that we have assumed. I wish to point out that the
mass values reported in figure 4 correspond, at any g, to the minimumω1 (the threshold) which
ensures the smallness of the ground-state polaron. Thus, they are upper bounds for the 1D mass
in the sense that the presence of larger intermolecular forces would yield lower mass values.
As expected on general grounds [33, 34], the small-polaron solution is the ground state of
the discrete Holstein model in the regime of intermediate-to-strong e–ph coupling considered
here, while, on decreasing the coupling, a continuous crossover to large-polaron solutions can
take place in 1D [31]. We have however seen (figure 1(b)) that the dispersive features of the
phonon spectrum could affect the transition by inducing a spreading of the lattice deformation.
Anyway, the smoothness of our m∗ versus α0 curve (persisting also in the lower α0-range not
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Figure 3. (a) As figure 1(a), but with a dispersionless polaron binding energy λ0 = 21.3. (b) As
figure 1(b), but with larger lattice deformation values. The lower bound for the validity of the
model is set at ω̄1 = 65 meV.

displayed in figure 4) confirms that no self-trapping is found in 1D anti-adiabatic regimes,
whereas recent variational [35] and perturbative investigations signalling a rapid growth of
m∗ versus e–ph coupling support the existence of the self-trapping transition between polaron
states of different structure in 1D adiabatic systems. In any case, phase transitions in Holstein
models are ruled out, since the ground-state energy is an analytic function of the e–ph coupling.

4. Concluding remarks

I have presented the first results from a perturbative approach to the polaron problem which
focuses on the lattice dimensionality effects. Having chosen the anti-adiabatic regime of
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Figure 4. One-dimensional polaron mass (in units of the bare-band mass) versus the lattice
deformation parameter. Both the first- and second-order perturbative results are displayed.

the Holstein molecular crystal model, we are confident of the accuracy of the first-order
perturbative theory for one-dimensional systems with strong e–ph coupling, whereas some
significant second-order corrections can occur for higher dimensionality. While a previous
work [25] had shown that a dispersionless Holstein model leads to (i) erroneous estimates of
the polaron bandwidth versus dimensionality and (ii) unphysical divergences in the site jump
probability [36], the present study reveals that the polaron effective mass is in all dimensions
very sensitive to the strength of the forces which tie the molecules in the lattice. We obtain
polaron masses between 2 and 25 times the bare-band mass by varying the e–ph coupling
in the range �1–2.5 and these values become essentially dimension independent when the
intermolecular forces are sufficiently strong. The molecular lattice structure has been described
by means of a single parameter, the first-neighbour intermolecular coupling, it being understood
that the range of the interactions should be extended in real systems if least-squares fitting of
the experimental phonon frequencies can provide effective values for the next neighbours and
long-range force constants [37]. The anti-adiabatic regime with strong e–ph coupling ensures
the validity of the quasiparticle picture for the small polaron; nonetheless we have seen that
some broadening of the phonon cloud can arise at intermediate e–ph couplings for strong values
of the intermolecular forces with consequent lowering of the lattice deformation parameter.
This interesting feature suggests that the intermolecular forces influence the quasiparticle size
and, incorporating the effects of the e–ph coupling, have a role in driving the continuous
transition between large and small polarons.
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